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Abstract- Subband adaptive polyphase convergence speed 
and complexity comparison have been recently apply for 
subband adaptive filter architecture. In this section, the 
convergence speed of all delayless subband adaptive 
filtering algorithms is compared. The convergence time 
can be measured by calculating a time constant based on 
the eigen values from the convergence analysis. The time 
constant τi  is the time required for the k-th natural mode 
to reach  1/e of its value . In this comparison, the largest 
time constant corresponding  to  slowest mode, is 
compared for different delayless subband adaptive filters 
with number of subbands M = 64, 128, 128 , 256 and  
fullband filter length  Lf ≤ 256. This techniques have been 
recently used for subband adaptive filters, since some of 
the applications such as acoustic echo cancellation and 
wideband active noise control need adaptive filters. the 
delayless subband adaptive filter architecture  open loop 
and closed loop convergence have been introduced. 
Delayless subband adaptive filtering is used in both open 
loop and closed loop configuration, where the subband 
filters are transformed to a fullband filter using a weight. 

Keywords- convergence, least mean square, intersymbole 
interference, lms, critically subband sampled. 

I. INTRODUCTION 

Since µ is set such that |1 − µλk| < 1, then the largest 
time constant τmax, which is related to the slowest 
mode and therefore important for the overall 
convergence behavior, is due to the eigen value for 
which the quantity |1 − µλi| is closest to unity. The 
maximum convergence speed is obtained when µ = 
1/λmax. The corresponding time constant for the fastest 

mode is then equal to zero. The minimum eigen value 
corresponds to slowest converging mode. It should be 
noted that the time constant unit is related to the update 
rate of the adaptive coefficients and must be multiplied 
with D to relate it to the full band sampling rate. The 
time constant τi is the time required for the k-th natural 
mode to reach 1/e of its value [1]. 
(1-µλi)τi =1/e                                       (1.1)              
Taking the natural logarithm on both sides yield 

τi  =  
)1ln(

1

iλμ−
−

                                   (1.2) 

 

              Fig 1. Subband adaptive open loop filtering 

The largest time constants and time constant ratios are 
plotted [2]. As concluded earlier, the coefficient 
transform does not influence these results. The step size 
is set at, µ = 1/λmax. It can be observed that for 
scenarios with a large number of fullband filter 
coefficients, the slowest mode of the LMS adaptive 
filter is slower than the slowest mode of the delayless 
subband adaptive filter. This is not necessarily the case 
with only few filter coefficients. It can also be seen that 
a distinct improvement is obtained [3]. 

When the number of subbands is increased 
towards M = 32. It should be noted that in the open loop 
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case, the slowest mode does not necessarily influence 
the convergence in terms of the mean square error. It 
does influence the convergence of the subband filter 
coefficients. 
            

 
 
         Fig 2. subband adaptive closed loop filtering 
 

II. SUBBAND ADAPTIVE FILTERING WITH 
LEAST MEAN SQUARE 

One of the most well-known control algorithm for 
adaptive filters is the Least Mean Square algorithm [1]. 
The LMS algorithm can in short be summarized using 
the equations 
y(n) = fT(n)x(n)                                                           (2.1) 
e(n) = d(n) − y(n)                                                               (2.2) 
f (n + 1)  = f (n) + µx (n)e(n)                                             (2.3) 
Where f (n) = [f0(n), . . . , fLf −1(n)]T is a vector with the 
filter coefficients at time instant n, and Lf denotes the 
number of filter coefficients. The vector  
x(n) = [x(n), . . . , x(n−Lf +1)]T is an input signal vector 
at time instant n, which holds Lf input samples starting 
with x(n) [4]. 

The LMS adaptive filter is an adaptive solution 
to the FIR Wiener filter design problem. The FIR 
Wiener filter is an optimal filter, which minimizes the 
Mean-Square Error  
J = E{|e(n)|2}                                                                      (2.4) 
Where E{.} is the expectation operator. The Minimum 
Mean-Square Error and corresponding optimal 
coefficients found by taking the gradient with respect to 
the filter coefficients and setting it to zero [5]. 

E{|e(n)|2} = E{e(n) e (n)} = −2E{e(n)x (n)}                 (2.5) 

Inserting eqations (2.1) and (2.2) and setting the 
gradient to zero yields the system of equations 
−2E{d(n)x (n)} + 2E{x (n)xT(n)}f = −2rdx + 2Rxxf = 0  

                                                                             (2.6) 
Where matrix Rxx = E{x (n)xT(n)} is the input signal 
autocorrelation matrix, vector rdx = E{d(n)x (n)} is a 
cross-correlation vector. Solving Eq. (2.6) leads to the 
optimal Wiener filter 
fWiener = R−1

xxrdx                                                                  (2.7) 
The coefficients of the adaptive LMS algorithm are 
updated using an instantaneous estimate of the gradient.  

III. SUBBAND ADAPTIVE CONVERGENCE IN 
THE MEAN SQUARE 

In this section, the theoretic analysis of the convergence 
of the adaptive LMS filter in the mean is briefly 
described. It is shown that the convergence speed of the 
adaptive [6] filter is dependent on the properties of the 
input correlation matrix. Substituting Eqs. (2.1) and 
(2.2) into Eq. (2.3) gives 
f (n + 1)  = f (n) + µd(n) − fT(n)x(n)x (n)                         (2.8) 
Taking the expected value, 
f(n+ 1) = f (n) + µE {d(n)x (n)} − µEx (n)xT(n)f(n) 
                                                                           (2.9) 
Under the assumption that the data x(n) and the LMS 
coefficient vector f (n) are statistically independent Eq. 
(2.9) can be rewritten as (2.10) 
f(n+1)= f(n) + µE{d(n)x (n)}−µEx (n)xT(n)f(n)                     
            = (I − µRxx)f (n) + µrdx                                      (2.11) 
Replacing rdx by RxxfWiener where fWieneris the optimal 
Wiener filter, yields 
f (n + 1)  =  (I − µRxx)f (n) + µRxxfWiener                           (2.12) 
The coefficient error ∆f (n) is defined as 
∆f (n) = f (n) − fWiener                                                       (2.13)  
Inserting Eq. (2.12) into Eq. (2.13) gives 
∆f (n) = (I−µRxx)f (n − 1) + µRxxfWiener − fWiener                     (2.14)   
           = (I − µRxx)(f (n − 1) − fWiener)                              (2.15) 
           = (I − µRxx)∆f (n − 1)                                           (2.16) 
Since the correlation matrix is hermitian, i.e. Rxx = RH

xx 
the matrix can be factorized using the eigen value 
decomposition Rxx = VΛVH (the spectral theorem) with 
orthogonal eigenvector matrix V and diagonal matrix Λ 
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with real eigen values on the main diagonal. Using the 
eigen value decomposition and the fact that VVH= I, 
yields 
∆f (n) = (VVH− µVΛVH)∆f (n − 1)                                (2.17) 
           =V(I−nµΛ)VH∆f(n−1)                                          (2.18) 
A modal coefficient error vector is introduced as   
∆f(n) = VH∆f (n) and evolves as a function of time 
according to 
∆f(n) = (I − µΛ)∆f(n − 1)                                                (2.19) 
With an initial vector ∆f(0) Eq. (2.19) can be rewritten 
as 
∆f(n) = (I − µΛ)n∆f(0)                                                    (2.20) 
Since (I − µΛ) is a diagonal matrix, the elements of 
∆f(n) can be expressed as  
∆fi (n) = (1 − µλk)n∆fi (0)                                               (2.21) 
which are referred to as the natural modes of the 
adaptive filter. The time constant τi is the time required 
for the k-th mode to reach 1/e of its value 
 (1 − µλi)τi= 1/e                                             (2.22) 
Taking logarithms yields 

                 τi  =  
)1ln(

1

iλμ−
−

                                           
(2.23) 

In order for f (n) to converge to fWiener, ∆f (n) should 
converge to zero and therefore ∆f (n) should converge 
to zero. This will occur if and only if 
|1 − µλi| < 1, i.                                                               (2.24) 
The decay for each mode is dependent on the magnitude 
of |1 − µλi| and is thus dependent on both µ and λi 
Therefore the step-size is restricted by, 
0 < µ < 2/maxλi                                                               (2.25) 

IV. SIMULATED AND MEASURED RESULT 

4.1 Open loop delayless subband filter result  

The identification of a length Np = 64, 128, 128, 256 
FIR system is considered. Experiments open loop 
delayless filter were performed with the fullband 
normalized LMS. The step-sizes were selected such that 
the best convergence rate µ= 0.1 presents the MSE 
evolutions. The new delayless subband structure 
presents a better convergence rate than the LMS 

algorithm, due to the power normalization of the step-
sizes [7]. 

Table4.1 
Number of subband M varying according to length 

K M µ N 

64 8 0.1 500 

128 8 0.1 500 
128 16 0.1 500 

256 16 0.1 500 

 
Members of ensemble = K, Convergence factor =  µ,  
Number of subband = M , Iteration = N. It converges to 
an MSE of the order of the stopband attenuation of the 
analysis filter which is around -12 db. Here small factor 
for the update equation for the signal energy in the 
subband .Coefficient vector of plant (denominator) A 
=1, coefficient vector of plant (numerator), B=[ 0.32,-
0.3,0.5,0.1] 
 

 
 

Fig.4.1.1: Simulation result of open loop system M=8 Np=64 
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Fig.4.1.2:Simulation result of open loop system M=8  
Np=128 

 
 
Fig.4.1.3 Simulation result of open loop system M=16     
Np=128 
 

 
Fig.4.1.4:  Simulation result of open loop system M=8 
Np=256 

 
4.2  Closed  loop delayless subband adaptive result 

The identification of a length Np = 64, 128, 128, 256 
FIR system is considered. Experiments closed loop 
delayless filter were performed with the fullband 
normalized LMS. The step-sizes were selected such that 
the best convergence rate µ= 0.1 presents the MSE 
evolutions. The new delayless subband structure 
presents a better convergence rate than the LMS 
algorithm, due to the power normalization of the step-
sizes. It converges to an MSE of the order of the 

stopband attenuation of the analysis filter which is 
around -11 db. Here small factor for the update equation 
for the signal energy in the subband .Coefficient vector 
of plant (denominator) A =1, coefficient vector of plant 
(numerator) B=[ 0.32,-0.3,0.5,0.2] [8]. 
 

 
Fig.4.2.1 Simulation result of closed loop system M=8  
Np=64 

 

 
 

Fig.4.2.2 Simulation result of closed loop system M=8  
Np=128 
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Fig.4.2.3: Simulation result of closed loop system M=16 
Np=128 

 

Fig.4.2.4 Simulation result of closed loop system M=16 
Np=256 

V. CONCLUSIONS & FUTURE WORK 

The convergence rate behavior of the open loop and 
closed loop configurations of the delayless subband 
adaptive filters architecture is studied. It is shown that 
the subband to fullband transform greatly affects the 
performance in terms of the fullband mean square error 
for the open loop configuration and in terms of the 
convergence speed for the closed loop configuration. It 
is shown that based on the results for the closed loop 
case, a transform with optimal convergence 
performance can be derived. A novel delayless subband 
adaptive filter is presented, which employs polyphase 
adaptive filters. This convergence has been analyses and 
compared to the behavior of the fullband LMS 

algorithm through of computer MATLAB simulations. 
It can be observed that initially the oversampled 
subband structure presents better convergence rate. A 
closed loop structure with the following features has 
been proposed [9]:  
1. Less  MSE curve .                                              
2. Better convergence . 

Comparison of Measured MSE’s Open Loop and Closed 
Loop 

Table 5.1 
Number of subband M varying according to length 

Np M µ Open 
loop 

MSE dB 

Closed 
loop 

MSE dB 
64 8 0.1 -14 -12 

128 8 0.1 -13 -11 

128 16 0.1 -12 -10 

256 16 0.1 -12 -8 

 
Members of ensemble =Np, Number of subband M, 
Convergence factor= µ 
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